17 research outputs found

    Satellite-MEC Integration for 6G Internet of Things: Minimal Structures, Advances, and Prospects

    Full text link
    The sixth-generation (6G) network is envisioned to shift its focus from the service requirements of human beings' to those of Internet-of-Things (IoT) devices'. Satellite communications are indispensable in 6G to support IoT devices operating in rural or disastrous areas. However, satellite networks face the inherent challenges of low data rate and large latency, which may not support computation-intensive and delay-sensitive IoT applications. Mobile Edge Computing (MEC) is a burgeoning paradigm by extending cloud computing capabilities to the network edge. By utilizing MEC technologies, the resource-limited IoT devices can access abundant computation resources with low latency, which enables the highly demanding applications while meeting strict delay requirements. Therefore, an integration of satellite communications and MEC technologies is necessary to better enable 6G IoT. In this survey, we provide a holistic overview of satellite-MEC integration. We first discuss the main challenges of the integrated satellite-MEC network and propose three minimal integrating structures. For each minimal structure, we summarize the current advances in terms of their research topics, after which we discuss the lessons learned and future directions of the minimal structure. Finally, we outline potential research issues to envision a more intelligent, more secure, and greener integrated satellite-MEC network

    Orf virus DNA vaccines expressing ORFV 011 and ORFV 059 chimeric protein enhances immunogenicity

    Get PDF
    Background: ORFV attenuated live vaccines have been the main prophylactic measure against contagious ecthyma in sheep and goats in the last decades, which play an important role in preventing the outbreak of the disease. However, the available vaccines do not induce lasting immunity in sheep and goats. On the other hand, variation in the terminal genome of Orf virus vaccine strains during cell culture adaptation may affect the efficacy of a vaccine. Currently, there are no more effective antiviral treatments available for contagious ecthyma. Results: We constructed three eukaryotic expression vectors pcDNA3.1-ORFV011, pcDNA3.1-ORFV059 and pcDNA3.1-ORFV011/ORFV059 and tested their immunogenicity in mouse model. High level expression of the recombinant proteins ORFV011, ORFV059 and ORFV011/ORFV059 was confirmed by western blotting analysis and indirect fluorescence antibody (IFA) tests. The ORFV-specific antibody titers and serum IgG1/IgG2a titers, the proliferation of lymphocytes and ORFV-specific cytokines (IL-2, IL-4, IL-6, IFN-gamma, and TNF-alpha) were examined to evaluate the immune responses of the vaccinated mice. We found that mice inoculated with pcDNA3.1-ORFV 011/ORFV059 had significantly stronger immunological responses than those inoculated with pcDNA3.1-ORFV011, pcDNA3.1-ORFV059, or pcDNA3.1-ORFV011 plus pcDNA3.1-ORFV059. Compared to other vaccine plasmids immunized groups, pcDNA3.1-ORFV011/ORFV059 immunized group enhances immunogenicity. Conclusions: We concluded that DNA vaccine pcDNA3.1-ORFV011/ORFV059 expressing ORFV011 and ORFV059 chemeric-proteins can significantly improve the potency of DNA vaccination and could be served as more effective and safe approach for new vaccines against ORFV.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000304650500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701VirologySCI(E)3ARTICLEnull

    Creation of an Industrial Bacillus thuringiensis Strain With High Melanin Production and UV Tolerance by Gene Editing

    Get PDF
    Bacillus thuringiensis produces insecticidal crystal proteins (ICPs) which exhibit strong insecticidal toxicity. But when used in the field, ICPs would be destroyed by ultraviolet (UV) radiation in sunlight, thus decreasing the insecticidal activity and shortening the persistence. To improve the duration of B. thuringiensis preparations, we endowed a highly toxic industrial B. thuringiensis HD-1 with UV tolerance by making it produce melanin, a pigment that absorbs UV radiation. In B. thuringiensis, melanin is derived from homogentisate (HGA), an intermediate in the tyrosine pathway. And the absence of homogentisate-1,2-dioxygenase (HmgA) will lead to the formation of melanin. In this study, we used the CRISPR/Cas9 system to knock out the hmgA gene and obtained a melanin-producing mutant HD-1-ΔhmgA from strain HD-1. The melanin yield by mutant HD-1-ΔhmgA reached 3.60 mg/mL. And the anti-UV test showed that melanin serves as a protection to both the organism and the ICPs. After UV irradiation for 3 h, mutant HD-1-ΔhmgA still had an 80% insecticidal activity against the cotton bollworm, Helicoverpa armigera, while the control line only had about 20%. This study creates a light-stable biopesticide prototype based on a classic industrial strain that can be applied directly and takes the melanin-producing strain as a concept to improve the preparation validity

    Identification of Glycine Receptor α3 as a Colchicine-Binding Protein

    Get PDF
    Colchicine (Col) is considered a kind of highly effective alkaloid for preventing and treating acute gout attacks (flares). However, little is known about the underlying mechanism of Col in pain treatment. We have previously developed a customized virtual target identification method, termed IFPTarget, for small-molecule target identification. In this study, by using IFPTarget and ligand similarity ensemble approach (SEA), we show that the glycine receptor alpha 3 (GlyRα3), which play a key role in the processing of inflammatory pain, is a potential target of Col. Moreover, Col binds directly to the GlyRα3 as determined by the immunoprecipitation and bio-layer interferometry assays using the synthesized Col-biotin conjugate (linked Col and biotin with polyethylene glycol). These results suggest that GlyRα3 may mediate Col-induced suppression of inflammatory pain. However, whether GlyRα3 is the functional target of Col and serves as potential therapeutic target in gouty arthritis requires further investigations

    Combining 3-dimensional degradable electrostatic spinning scaffold and dental follicle cells to build peri-implant periodontium

    No full text
    Introduction: Some inevitable problems, such as concentrated bite force and lacked ability of self-renewal, are proved to be the major challenge in the management of implants failures. Thus, it is meaningful to find an ideal dental implant harboring its own peri-implant periodontium, just as the natural teeth. Various studies attempted to reconstruct the periodontium around implants, but unfortunately, it was previously revealed that the artificial periodotium around implants was just a wilderness of fibers, while without the physiological function of natural periodontium, like sensory and homeostatic. The Hypothesis: In this paper, we propose a hypothesis that a modified three-dimensional scaffold with reconstructed peri-implant tissues can be a network for stem cells differentiation. After seeded on the scaffold, stem cells produce various growth factors and differentiate to different orientations in places necessary. This hypothesis, if proven to be valid, will offer a novel and effective therapy for the restoration of missing teeth by implant. Evaluation of the Hypothesis: The scaffold involves three different tissues. Though degradation rate of electrospinning scaffold is under control, its degradation rate should be in consistent with the generation of three tissues. Therefore, the relative experiments are necessary to define the best rate of degradation. Further verification is necessary to check whether the rebuilt cementum, bone and periodontium are strong enough to keep the implant stable and maintain its function

    A Multi-Agent Deep-Reinforcement-Learning-Based Strategy for Safe Distributed Energy Resource Scheduling in Energy Hubs

    No full text
    An energy hub (EH) provides an effective solution to the management of local integrated energy systems (IES), supporting the optimal dispatch and mutual conversion of distributed energy resources (DER) in multi-energy forms. However, the intrinsic stochasticity of renewable generation intensifies fluctuations in the system’s energy production when integrated into large-scale grids and increases peak-to-valley differences in large-scale grid integration, leading to a significant reduction in the stability of the power grid. A distributed privacy-preserving energy scheduling method based on multi-agent deep reinforcement learning is presented for the EH cluster with renewable energy generation. Firstly, each EH is treated as an agent, transforming the energy scheduling problem into a Markov decision process. Secondly, the objective function is defined as minimizing the total economic cost while considering carbon trading costs, guiding the agents to make low-carbon decisions. Lastly, differential privacy protection is applied to sensitive data within the EH, where noise is introduced using energy storage systems to maintain the same gas and electricity purchases while blurring the original data. The experimental simulation results demonstrate that the agents are able to train and learn from environmental information, generating real-time optimized strategies to effectively handle the uncertainty of renewable energy. Furthermore, after the noise injection, the validity of the original data is compromised while ensuring the protection of sensitive information

    Cyclophilin B facilitates the replication of Orf virus

    No full text
    Abstract Background Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Methods Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID50) assay and qRT-PCR detection. Results In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Conclusions Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV

    Polyethylenimine-Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery

    No full text
    Aerogels from polyethylenimine-grafted cellulose nanofibrils (CNFs-PEI) were developed for the first time as a novel drug delivery system. The morphology and structure of the CNFs before and after chemical modification were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Water-soluble sodium salicylate (NaSA) was used as a model drug for the investigation of drug loading and release performance. The CNFs-PEI aerogels exhibited a high drug loading capability (287.39 mg/g), and the drug adsorption process could be well described by Langmuir isotherm and pseudo-second-order kinetics models. Drug release experiments demonstrated a sustained and controlled release behavior of the aerogels highly dependent on pH and temperature. This process followed quite well the pseudo-second-order release kinetics. Owing to the unique pH- and temperature-responsiveness together with their excellent biodegradability and biocompatibility, the CNFs-PEI aerogels were very promising as a new generation of controlled drug delivery carriers, offering simple and safe alternatives to the conventional systems from synthetic polymers

    Systemic antibiotics increase microbiota pathogenicity and oral bone loss

    No full text
    Abstract Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice
    corecore